On a Penrose Inequality with Charge Gilbert Weinstein and Sumio Yamada

نویسنده

  • SUMIO YAMADA
چکیده

We construct a time-symmetric asymptotically flat initial data set to the Einstein-Maxwell Equations which satisfies m− 1 2 ( R+ Q R ) < 0, where m is the total mass, R = √ A/4π is the area radius of the outermost horizon and Q is the total charge. This yields a counter-example to a natural extension of the Penrose Inequality for charged black holes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extensions of the charged Riemannian Penrose inequality

In this paper we investigate the extension of the charged Riemannian Penrose inequality to the case where charges are present outside the horizon. We prove a positive result when the charge densities are compactly supported, and present a counterexample when the charges extend to infinity. We also discuss additional extensions to other matter models.

متن کامل

Lower bounds for the area of black holes in terms of mass, charge, and angular momentum

Sergio Dain,* Marcus Khuri, Gilbert Weinstein, and Sumio Yamada Facultad de Matemática, Astronomı́a y Fı́sica, FaMAF, Universidad Nacional de Córdoba, Instituto de Fı́sica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria, 5000 Córdoba, Argentina Department of Mathematics, Stony Brook University, Stony Brook, New York 11794, USA Department of Physics; Department of Computer Science and Mathemat...

متن کامل

The Riemannian Penrose Inequality with Charge for Multiple Black Holes

We present the outline of a proof of the Riemannian Penrose inequality with charge r ≤ m + √ m2 − q2, where A = 4πr2 is the area of the outermost apparent horizon with possibly multiple connected components, m is the total ADM mass, and q the total charge of a strongly asymptotically flat initial data set for the Einstein-Maxwell equations, satisfying the charged dominant energy condition, with...

متن کامل

Proof of the Riemannian Penrose Inequality with Charge for Multiple Black Holes

We present a proof of the Riemannian Penrose inequality with charge in the context of asymptotically flat initial data sets for the Einstein-Maxwell equations, having possibly multiple black holes with no charged matter outside the horizon, and satisfying the relevant dominant energy condition. The proof is based on a generalization of Hubert Bray’s conformal flow of metrics adapted to this set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004